Endometriosis is associated with aberrant metabolite profiles in plasma Objective: To identify metabolites that are associated with and predict the presence of endometriosis.
Design: Metabolomics study using state-of-the-art mass spectrometry approaches.
Setting: University hospital and universities.
Patient(s): Twenty-five women with laparoscopically confirmed endometriosis (cases) and 19 women with laparoscopically documented absence of endometriosis (controls). None of the women included in this study had received oral contraception or GnRH agonists for a minimum of 1 month before blood collection.
Intervention(s): Plasma collection.
Main outcome measure(s): Metabolite profiles were generated and interrogated using multiple mass spectrometry methods, that is, high performance liquid chromatography coupled with negative mode electrospray ionization tandem mass spectrometry, UPLC-MS/MS, and ultra performance liquid chromatography-electroSpray ionization-quadrupole time-of-flight (UPLC-ESI-Q-TOF). Metabolite groups investigated included phospholipids, glycerophospholipids, ether-phospholipids, cholesterol-esters, triacylglycerol, sphingolipids, free fatty acids, steroids, eicosanoids, and acylcarnitines.
Result(s): A panel of acylcarnitines predicted the presence of endometriosis with 88.9% specificity and 81.5% sensitivity in human plasma, with a positive predictive value of 75%. However, due to data limitations the outcome of the receiver operating characteristic curve analysis was not significant.
Conclusion(s): A diagnostic model based on acylcarnitines has the potential to predict the presence and stage of endometriosis.
Keywords: Diagnosis; acylcarnitines; endometriosis; metabolomics. Download the document
Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts PMID: 32084494 DOI: 10.1016/j.biochi.2020.02.008
Cartilage acidic protein 1 (CRTAC1) is an extracellular matrix protein of human chondrogenic tissue that is also present in other vertebrates, non-vertebrate eukaryotes and in some prokaryotes. The function of CRTAC1 remains unknown but the protein's structure indicates a role in cell-cell or cell-matrix interactions and calcium-binding. The aim of the present study was to evaluate the in vitro effects of hCRTAC1-A on normal human dermal fibroblasts (NHDF). A battery of in vitro assays (biochemical and PCR), immunofluorescence and a biosensor approach were used to characterize the protein's biological activities on NHDF cells in a scratch assay. Gene expression analysis revealed that hCRTAC1-A protein is associated with altered levels of expression for genes involved in the processes of cell proliferation (CXCL12 and NOS2), cell migration (AQP3 and TNC), and extracellular matrix-ECM regeneration and remodeling (FMOD, TIMP1, FN1) indicating a role for hCRTAC1-A in promoting these activities in a scratch assay. In parallel, the candidate processes identified by differential gene transcription were substantiated and extended using Electric cell-substrate impedance sensing (ECIS) technology, immunofluorescence and cell viability assays. Our findings indicate that hCRTAC1-A stimulated cell proliferation, migration and ECM production in primary human fibroblasts in vitro.
Skin Protective Effects of Nannochloropsis gaditana Extract on H2O2-Stressed Human Dermal Fibroblasts Nowadays, there is huge interest in natural products obtained from marine organisms that can promote a state of health and well-being for humans. Microalgae represent a primary source of bioactive compounds that could be used as functional ingredients in cosmetic formulations. The aim of the present study is to evaluate, for the first time, the effects of Nannochloropsis gaditana extract against oxidative stress in human primary fibroblasts so as to investigate the potential applications of it in cosmetics. To gain an insight into the molecular mechanisms of N. gaditana bioactivity, we developed a new RT-qPCR platform for studying transcript accumulation for an array of selected genes (up to 100) involved in many skin-related processes including anti-aging, hydration, oxidative stress response, and DNA damage. For the oxidative stress evaluation, H2O2 was used as a stressor. The study of the transcript accumulation of genes revealed that N. gaditana extract exhibits skin protection properties by mediating oxidative responses and apoptosis (including SOD1, GPX1, BID), positively regulates genes involves in skin texture and hydration (including AQP3, Col6A1, FBN1) and modulates the expression of genes involved in skin irritation, DNA damage and aging (including IL1R, PCNA, FOXO3). These findings indicate that the specific N. gaditana extract possesses significant in vitro skin protection activity against induced oxidative stress, and provide new insights into the beneficial role of microalgae bioactive compounds in cosmetic formulations protecting skin from oxidative stress. Download the document
|
Sophia Letsiou |
University of West Attica |
Athina |